

MOTIVATION

Traditional Radar's Role for Autonomous Driving

- Obstacle ranging and speed estimation.
- All-weather robust sensing.
- Supplementary sensor for camera, LiDAR, etc.
- Rethinking of Radar's Role
- Use as a primary sensor independently.
- Achieve more complicated tasks, e.g., object detection and tracking.
- It is very important when other sensors are not reliable in adverse driving scenarios.

Radar Object Detection (ROD)

- **Detector**: uses radar data as the only input to do object detection.
- Annotator: takes both camera and radar data to generate annotations by detection alignment between camera and radar.
- **Scorer**: compare the detection with ground truth using a series of evaluation metrics.

Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic Annotator via Coordinate Alignment

Yizhou Wang¹, Gaoang Wang², Hung-Min Hsu¹, Hui Liu^{1,3}, Jeng-Neng Hwang¹ ¹ University of Washington, ² Zhejiang University, ³ Silkwave Holdings Limited

DATASET

Radar Data Representations

azimuth (angle) RF Image (BEV)

Radar Points

Radio frequency (RF) image (Ours):

- Strength: Rich information including object location, shape, surface texture, speed, etc.
- Weakness: Hard to extract features.

```
CRUW Dataset
```

• Scale: 3.5 hours, 30 FPS, RF images

- Sensors: 1) A pair of stereo cameras. 2) Two 77GHz FMCW radar antenna arrays.
- Scenarios: Parking lot (PL), Campus road (CR), City street (CS), Highway (HW)

- Object detection on RGB images Peak detection on RF images Initial clustering: DBScan

- Project detection between RGB pixel coordinates and radar range-azimuth coordinates through ground plane.

- Detection alignment cost

ANNOTATOR

Radar Object Annotation System

• Initialization:

Bilateral Coordinate Projection:

Detection Alignment and Optimization:

$$\ell_i = \lambda_i \left(h_i - h_i^{mask} \right)^2 + \left(1 - \lambda_i \right) \left(h_i - h_i^{bbox} \right)$$

Ground plane optimization

$$\min_{\varphi,\gamma} \sum_{t} \sum_{i=1}^{n_{CFAR}} \left(v_{i,t} - v_{i,t}^{mask} \right)^2$$

Method

RODNet (Vanilla)

RODNet (HG) [3

RODNet (Full) [3

• Evaluation Metrics

- Mean absolute error (MAE)
- Average precision (AP)
- Average recall (AR)
- Detection Quality F1 (DQF1) Score:

DQ

SCORER

• Point-based Similarity

$$OLS(i,j) = \exp\left\{\frac{-d_{ij}^2}{2(s_j\kappa_{cls})^2}\right\}$$

d: distance between two points. s: distance from target to sensor. κ : per-class constant for error tolerance.

$$\mathbf{F1} = \frac{2}{n_{det} + n_{gt}} \sum_{j=1}^{n_{gt}} \sum_{i=1}^{n_{det}} \delta_{i,j} \cdot \mathbf{OLS}(i,j)$$

	Scenario	MAE	Precision	Recall	AP	AR	DQF1
[<mark>33</mark>]	Overall	0.31 (±0.26)	95.90%	78.03%	74.29%	77.85%	81.02%
	Parking Lot	0.26 (±0.19)	98.29%	87.76%	85.33%	86.76%	89.33%
	Campus Road	0.42 (±0.30)	89.49%	53.02%	42.67%	49.03%	56.03%
	City Street	0.48 (±0.39)	88.88%	73.42%	59.79%	67.23%	71.15%
3]	Overall	0.31 (±0.23)	96.02%	88.56%	83.76%	85.62%	86.64%
	Parking Lot	0.26 (±0.16)	98.26%	96.94%	93.60%	94.98%	93.63%
	Campus Road	0.40 (±0.26)	92.16%	68.76%	50.34%	57.23%	70.28%
	City Street	0.48 (±0.39)	91.53%	81.27%	64.54%	70.47%	75.55%
4]	Overall	0.31 (±0.25)	95.93%	88.86%	85.98%	87.86%	87.82%
	Parking Lot	0.27 (±0.21)	98.49%	97.98%	95.79%	96.85%	94.62%
	Campus Road	0.36 (±0.26)	92.08%	69.40%	57.06%	62.08%	73.62%
	City Street	0.49 (±0.37)	91.59%	76.37%	62.83%	70.41%	74.65%