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MOTIVATION

 Traditional Radar’s Role for
Autonomous Driving

» Obstacle ranging and speed estimation.
* All-weather robust sensing.
* Supplementary sensor for camera, LIDAR, etc.

* Rethinking of Radar’s Role
» Use as a primary sensor independently.

* Achieve more complicated tasks, e.g., object
detection and tracking.

 |tis very important when other sensors are not
reliable in adverse driving scenarios.

 Radar Object Detection (ROD)
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* Detector: uses radar data as the only input to
do object detection.

* Annotator: takes both camera and radar data
to generate annotations by detection
alignment between camera and radar.

* Scorer. compare the detection with ground
truth using a series of evaluation metrics.
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DATASET

 Radar Data Representations
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» Radio frequency (RF) image (Ours):
» Strength: Rich information including object
location, shape, surface texture, speed, etc.

 \Weakness: Hard to extract features.

 CRUW Dataset

* Scale: 3.5 hours, 30 FPS, RF images

* Sensors: 1) A pair of stereo cameras. 2) Two
[ TGHz FMCW radar antenna arrays.

» Scenarios: Parking lot (PL), Campus road
(CR), City street (CS), Highway (HW)
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ANNOTATOR

Radar Object Annotation System

Boject Dewclion & Radar Peak Detection
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Initialization:

Object detection on RGB images
Peak detection on RF images
Initial clustering: DBScan

Bilateral Coordinate Projection:

Project detection between RGB pixel
coordinates and radar range-azimuth
coordinates through ground plane.

Detection Alignment and Optimization:
Detection alignment cost
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Ground plane optimization
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SCORER

* Point-based Similarity
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d. distance between two points.
s. distance from target to sensor.
k. per-class constant for error tolerance.

 Evaluation Metrics
* Mean absolute error (MAE)

* Average precision (AP)

* Average recall (AR)
» Detection Quality F1 (DQF1) Score:
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Method

Scenario

MAE
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Recall

AP
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RODNet (Vanilla) [*7]

Overall
Parking Lot
Campus Road
City Street

0.31 (£0.26)
0.26 (£0.19)
0.42 (£0.30)
0.48 (£0.39)

95.90%
98.29%
89.49%
88.88%

78.03%
87.76%
53.02%
73.42%

74.29%
85.33%
42.67%
59.79%

77.85%
86.76%
49.03%
67.23%

81.02%
89.33%
56.03%
71.15%

RODNet (HG) [ 7]

Overall
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Campus Road
City Street

0.31 (£0.23)
0.26 (£0.16)
0.40 (£0.26)
0.48 (£0.39)

96.02%
98.26%
92.16%
91.53%

88.56%
96.94%
68.76%
81.27%

83.76%
93.60%
50.34%
64.54%

85.62%
94.98%
57.23%
70.47%

86.64%
93.63%
70.28%
19:95%

RODNet (Full) [*4]
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0.49 (£0.37)
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88.86%
97.98%
69.40%
76.37%

85.98%
95.79%
57.06%
62.83%

87.86%
96.85%
62.08%
70.41%

87.82%
94.62%
73.62%
74.65%




