
GIF Super-Resolution

Yizhou Wang
Columbia University

wang.yizhou@columbia.edu

Liangliang Cao
Hellovera AI

liangliang.cao@gmail.com

Abstract

Although GIFs have been popular on the Internet, they
suffer from slow download speed due to the reliance on its
old coding schemes and thus lead to large file sizes. To solve
this problem, this paper proposes a novel super-resolution
approach for GIFs, which uses two high-resolution frames
(the first and last frames) as well as the low-resolution data
to generate a high-resolution GIF. The two single frames
are very small compared with the size of the GIFs, so that
our approach requires little extra cost but brings impres-
sive performance boost. This approach is motivated by the
unique characteristics of GIFs, especially GIFs are usually
much shorter than videos but have quite diverse and dy-
namic content. To validate this approach, we collect a new
super-resolution dataset for GIFs, which is the first dataset
devoted to GIF super-resolution, while containing signifi-
cantly more sequences than previous video super-resolution
datasets. The experiments on this dataset show that the
performance of our algorithm significantly outperforms the
popular video super-resolution baselines while achieving at
least 80 times speedup on CPU.

1. Introduction
The format of GIF (Graphics Interchange Format) was

first introduced in 1987, but only gained their popularity
over the last few years. The reason for its popularity is be-
cause GIFs facilitate mobile communication and encourage
Web engagement. GIFs are more attractive than still images
and easier to display and share than traditional videos. Ac-
cording to Twitter1, people shared more than 100 million
GIFs in 2015 through tweets.

Despite its popularity, GIF is an old format created 30
years ago and the compression algorithm for GIF is far from
being efficient. The format supports up to 8 bits per pixel for
each image, which supports only up to 256 different colors,
which are significantly reduced compared to the popular 24-
bit RGB color space. These limitations make GIF less ef-

1https://blog.twitter.com/official/en_us/a/
2016/introducing-gif-search-on-twitter.html

fective in representing color photographs and color gradi-
ents. GIF images are based on lossless compression, which
uses the LempelZivWelch (LZW) algorithm to reduce the
file size. Due to the nature of the lossless compressing al-
gorithm, GIF files are often much bigger than their counter-
parts in videos of the formats of MP4 or MOV. In practice,
GIFs are usually encoded with low spatial resolutions.

This paper aims to address the problem of limited reso-
lutions associated with animated GIFs. The idea of super-
resolution is to first transfer a low-resolution GIF and then
decode it to the high-resolution on the client side. Such an
approach has been studied in similar fields, especially im-
age super-resolution and video super-resolution.

In practice the GIF super-resolution is very different
from videos due to the following characteristics: (1) GIFs
involve no audio, (2) GIFs are usually very short in dura-
tion, and (3) when the bandwidth is not high enough (espe-
cially on mobile devices), users first see only the first frame
instead of the animated GIFs unless the user clicks to down-
load.

To study the problem of GIF super-resolution, we collect
a large dataset with various GIF categories. It contains 1134
GIFs including emotion, action, animation, scene, and ani-
mal. Compared with the popular video datasets with dozens
to hundreds of videos developed for super-resolution re-
search, our dataset is significantly larger. To the best of our
knowledge, this is the first dataset for GIF super-resolution.
We will release this dataset for future research.

Based on the new dataset, we develop a simple but ef-
ficient approach for GIF super-resolution as shown in Fig-
ure 1. We propose to augment the low-resolution GIF with
two high-resolution images corresponding to the first and
last frames. The cost of introducing two high-resolution im-
ages is very low: two frames are small compared with the
size of the whole GIF, and they can be shown as the still il-
lustration before loading the entire animated GIF on mobile
devices. However, our approach leads to significantly better
GIF super-resolution results. The peak signal-to-noise ra-
tio (PSNR) of our approach is consistently higher than the
state-of-the-art video super-resolution approach, while our
approach is at least 80 times faster. Moreover, our method

https://blog.twitter.com/official/en_us/a/2016/introducing-gif-search-on-twitter.html
https://blog.twitter.com/official/en_us/a/2016/introducing-gif-search-on-twitter.html

High-Resolution GIFs

Last Frame

Low-Resolution GIFs

First Frame

Input	Data
LR	GIFs	&	first,	last	

frames

Interpolated GIFs

Temporal	
Operator	

Optimization

Recovered GIFs

Single Frame
Interpolation

Down
Sample

Figure 1: Diagram of our GIF SR method.

can compress the file size by 70%, which means that user
only needs to download 30% size of a high-resolution GIF
to review the GIF on mobile devices. We believe our ap-
proach is very promising and encourage more effective ap-
proaches in the future.

The contribution of this work is three-fold: (1) it col-
lects a new large GIF super-resolution dataset and release
it as a public benchmark; (2) it proposes to expand the
traditional GIF data by adding two high-resolution frames
(the first and last frames); (3) it develops a simple but ef-
fective super-resolution approach exploiting the proposed
expanded format which outperforms the popular baseline
for video super-resolution while achieving at least 80 times
speedup on CPU.

This paper is organized as follows: Firstly, we explored
some research works related to image super-resolution and
video super-resolution in Section 2. Then, in Section 3, we
collected the first GIF super-resolution dataset – GIFSR.
After that, we proposed a GIF super-resolution method
in Section 4, which combining Bicubic Interpolation and
a proposed temporal operator. The experiments of our
method are performed on GIFSR dataset in Section 5 and
we conclude the paper in Section 6.

2. Related Work

There are mainly two groups of works on super-
resolution: image super-resolution and video super-
resolution. A large proportion of the existing studies
[9][6][10][5] are devoted to image super-resolution. How-
ever, these studies do not consider the motion information
and multiple frame scenarios, and hence are not good can-
didates for our problem.

Video super-resolution extends the techniques in im-
age super-resolution to generate high-resolution frames. A
number of recent studies [11][12][7][8][13] are carried out
by combining single frame appearance and motion infor-

mation. Especially, Kappeler et al. [8] proposed VSRnet,
which trains CNN based network on both the spatial and
the temporal dimensions to enhance their spatial resolu-
tion, and obtains the state-of-the-art results for video super-
resolution.

One limitation of existing video super-resolution meth-
ods lies in the lack of large-scale video database for training.
Although there are a number of large-scale image database
including ImageNet, MIT Scene, and YFCC100M, the
datasets used for video super-resolution are much smaller.
For example, Videoset4 [4] has only 4 videos Myanmar [3]
has 59 videos, and CDVL [1] has 115 videos. Due to the
dataset limitation, some video super-resolution studies [8]
have to use from ImageNet to pre-trained the model, and
adapt the model to video data. Since many recent works
suggest large-scale data will help to improve the perfor-
mance, we collect a new super-resolution dataset with more
than 1000 GIF sequences and hope it will benefit the future
research in super-resolution.

Another limitation of many existing video super-
resolution algorithms is a slow speed. For example, it may
take VSRnet [8] about 20 seconds to several minutes to pro-
cess a short video sequence. Such a speed is not acceptable
for Internet users who want to view or share a GIF with
their friends. To solve this problem, this paper focuses on
efficient solutions. As a result, our new algorithm can be 80
times faster than [8] for GIF super-resolution.

3. Dataset

In this work, we collect the first large GIF super-
resolution dataset for our study. The GIFs in the dataset
are collected from GIPHY Website [2]. We collected 1134
GIFs and grouped into five categories: emotion, action,
scene, animation, and animal. In the following sections,
we will name our dataset as “GIFSR” where “SR” stands
for the abbreviation of super-resolution.

Some sample GIFs in GIFSR dataset are shown in Fig-
ure 2. The category distribution of the GIFs and their aver-
age length (frame number) are shown in Table 1. The cat-
egory that contains most GIFs is “emotion set”, which will
be used in many of the following experiments in Section 5.

The GIFs are with various lengths from 6 to 400 frames
and the distribution of the frame numbers are shown in Fig-
ure 3. From the figure, we can find out that most of the
GIFs are distributed in the range of [6, 50]. This is because
the GIFs that we commonly use are short in length and do
not contain rich information.

Then, we compare our dataset with other datasets for
video super-resolution. As shown in Table 2, our dataset
is significantly larger than the previous ones.

(a) Emotion

(b) Action (c) Scene

(d) Animation (e) Animal GIFs.

Figure 2: Sample GIFs in GIFSR dataset by categories.

Number of frames
0 50 100 150 200 250 300 350 400

N
um

be
r

of
 G

IF
s

0

50

100

150

200

250

300

350
Distribution of frame numbers

Figure 3: Distribution of frame numbers in GIFSR dataset.

Category Nr. of GIFs Avg. frame
Emotion 446 35.6
Action 256 39.0
Scene 123 64.5
Animation 266 40.1
Animal 43 80.2

Total 1134 42.24

Table 1: Category distribution and the average frame in
GIFSR dataset.

Dataset Nr. of items Resolution
Myanmar[3] 59 960× 540
Videoset4[4] 4 702× 576∗

CDVL[1] 115 1920× 1080
GIFSR 1176 128× 128
∗ Vid4 is composed of walk, city, calendar and foliage,

and has sizes 720× 480 or 720× 576.

Table 2: Comparison between GIFSR and traditional video
super-resolution sets.

4. Our Method
Based on these unique characteristics, our super-

resolution method takes the low-resolution GIF together
with two high-resolution images corresponding to the first
and last frames. The cost of introducing two high-resolution
images is very low: two frames are small compared with
the size of the whole GIF, and can be shown as the still il-
lustration before loading on mobile devices. However, the
benefit of introducing two high-resolution images leads to a
novel solution with nice super-resolution performance. Fol-
lowing this simple idea, we assumed the first frame and the
last frame of a GIF is known. Our model is to use the low-
resolution GIF as well as the high-resolution first and last
frames to predict the high-resolution GIF.

To model the temporal relationship between GIF frames,
we proposed a temporal operator to predict the current
frame using the past frame and the low-resolution version
of the current frame. The forward operation between each
frame is

Fi = ρfFi−1 + γffi,

and the backward operation is

Fi = ρbFi+1 + γbfi,

where Fi is the iteration result of the i-th frame, and fi is
the Bicubic Interpolation (BI) result of the i-th frame. ρf ,
γf , ρb, γb are coefficients of the temporal operator.

So the last frame Fn can be computed using the ground
truth of the first frame FGT0 and the BI of the middle frames

{fi}i∈[1,n].

Fn = ρfFn−1 + γffn

= ρf (ρfFn−2 + γffn−1) + γffn

= · · ·

= ρnfF
GT
0 +

n∑
i=1

ρn−if γffi.

Then, we do an optimization using the ground truth of
the last frame FGTn ,

min
ρf ,γf

lf (ρf , γf) = min
ρf ,γf

∥∥Fn − FGTn ∥∥2 .
To solve this optimization problem, use gradient descent

on the object function lf (ρf , γf). The partials of lf (ρf , γf)
respected to coefficients ρf and γf are

∂lf (ρf , γf)

∂ρf
= 2Fn

∂Fn
∂ρf

− 2FGTn
∂Fn
∂ρf

,

∂lf (ρf , γf)

∂γf
= 2Fn

∂Fn
∂γf

− 2FGTn
∂Fn
∂γf

,

where
∂Fn
∂ρf

= nFGT0 ρn−1f +

n−1∑
i=1

(n− i)ρn−i−1f γffi,

∂Fn
∂γf

=

n∑
i=1

ρn−if γffi.

Thus, the gradient of lf (ρf , γf) is

∇lf =

(
∂Fn
∂ρf

,
∂Fn
∂γf

)
.

Similarly, we also have an optimization using the ground
truth of the first frame FGT0 ,

min
ρb,γb

lb(ρb, γb) = min
ρb,γb

∥∥F0 − FGT0

∥∥2 .
The gradient of lb(ρb, γb) is

∇lb =
(
∂F0

∂ρb
,
∂F0

∂γb

)
.

Note {Fi}i∈[0,n] as the results of super-resolution,
{fi}i∈[0,n] as the BI of the i-th frame. We consider the cost
function

l(ρf , γf , ρb, γb) = ||Fn − FGTn ||2 + ||F0 − FGT0 ||2, (1)

where the super-resolution result is computed by

Fi = ρfFi−1 + γffi.

F0 F1 F2 Fn−1 Fn

f0 f1 f2 fn−1 fn

FGT
0 F1 F2 Fn−1 Fn

. . .

. . .
ρb ρb ρb ρb ρb

ρf ρf ρf ρf ρf

γb γb γb γb

γf γf γf γf

Figure 4: Block diagram of our model.

The block figure of the above model is shown in Figure 4.
In practice, we can choose the first half of the cost func-

tion (1), whose gradient can be computed efficiently
∂l(ρf , γf)

∂ρf
= 2Fn

∂Fn
∂ρf

− 2FGTn
∂Fn
∂ρf

,

∂l(ρf , γf)

∂γf
= 2Fn

∂Fn
∂γf

− 2FGTn
∂Fn
∂γf

.

Put them together, GIF Super-Resolution algorithm is
proposed as Algorithm 1.

Algorithm 1: GIF-SuperResolution

Input : Low-resolution GIF, High-resolution first
frame FGT0 and last frame FGTn .

Output: High-resolution GIF result.

1 Extract frames FLRi from the low-resolution GIF, the
number of frame is n;

2 for i← 0 to n do
3 fi ← BicubicInterp(FLRi);
4 end
5 Initialize parameters ρ(0)f , γ(0)f ;
6 Gradient descent parameters: step size ε, number of

iterations t;
7 ρ

(t)
f , γ(t)f ←
GradientDescent({fi}i∈[0,n], FGT0 , FGTn);

8 for i← 1 to n do
9 Fi = ρ

(t)
f Fi−1 + γ

(t)
f fi;

10 end
11 Merge the frames FGT0 , {Fi}i∈[1,n−1], FGTn to GIF;

5. Experiment
In this section, we first applied our method of GIF super-

resolution on GIFSR dataset. Then, we compared our
PSNR results with two baselines Bicubic Interpolation and
VSRnet [8]. After that, we analyzed the execution time for
our method to illuminate that our algorithm can be really
fast in the application. Moreover, we analyzed the file size

Category BI PSNR Our results
Emotion 20.25 23.91
Action 18.90 21.48
Scene 18.07 20.97
Animation 18.38 21.93
Animal 20.10 22.68

Total 19.27 22.53

Table 3: The results for PSNR results of different cate-
gories in GIFSR dataset with resolution combination of
(HR, LR) = (128, 32).

of the input and output of our method to show the potentials
of our algorithm for real-world GIF data.

Our experiment for Bicubic Interpolation was performed
on a MacBook Pro with 2.7 GHz Intel Core i5 processor and
experiment for VSRnet was performed on a Linux worksta-
tion with an NVIDIA GeForce GTX 980 graphics card.

5.1. PSNR of Our Method

We implemented our proposed method with Python. The
high-resolution (HR) of our dataset is 128× 128 pixels and
the low-resolution (LR) GIF to be processed is 32× 32 pix-
els. Here, denote (HR, LR) as resolution combination. Dur-
ing the gradient descent, we set the step size to be 10−8 and
number of iterations to be 50. Before iteration, we initialize
ρf = ρb = [0.9]128×128×3, γf = γb = [0.1]128×128×3.

After implemented our method on GIFSR dataset, we got
an average PSNR of 22.53. Some example result frames are
shown in Figure 5. The PSNR of each category is shown in
Table 3. From the results, we can conclude that the PSNR of
our method is better than BI in all five categories in GIFSR.
Among all the five categories, emotion set obtains the great-
est improvement using our method. A proper reason could
be that the average length of emotion set is shortest; the
motion of the emotion set is the weakest so that it would be
easier to do super-resolution.

We also did some experiments of VSRnet [8] on GIFSR
emotion set and obtained the following PSNR results shown
in Table 4. Here, we down-sampled the GIFs in GIFSR
dataset to three different resolution combinations (HR,
LR) = (32, 8), (64, 16), (128, 32). There is a technique
when implementing VSRnet. Since VSRnet only supports
grayscale frames, we input the three channels of each frame
separately and combined the result for three channels at the
end.

Based on the experiments, we summarize our observa-
tion as the following: (1) The PSNR of lower resolution
combinations is less than higher resolution combinations
in all three methods. (2) The performance of VSRnet is
bad when resolution combinations are low, even worse than

Model (HR, LR) PSNR
Bicubic (32, 8) 15.66

(64, 16) 17.90
(128, 32) 20.25

VSRnet (32, 8) 13.42
(64, 16) 18.48
(128, 32) 22.10

Our result (32, 8) 22.28
(64, 16) 23.17
(128, 32) 23.91

Table 4: Comparison between PSNR of Bicubic Interpola-
tion, VSRnet and our method on GIFSR emotion set with
different resolution combinations.

Bicubic Interpolation. (3) The PSNR of our method is better
than other two methods in every condition.

As mentioned in Section 3, there are more GIFs with
small frame number in the range of [6, 50] in GIFSR dataset.
Thus, the frame number should not be a constraint in GIF
super-resolution algorithms. However, we want to know
deeper about the effect of frame number in our method. So
that we plot some scatters as Figure 6. Each point in the
scatters represents a GIF item and the color represents its
category shown in the legend. The y-axis “PSNR incre-
ment” is the increment of PSNR from Bicubic Interpolation
to our results. In Figure 7b, the points are intensive in the
middle-left area. Though it is not easy to find out the rela-
tionship, there are few points in the upper-right area, which
means the super-resolution for long GIFs are difficult to be
improved by our method. To make it clear, we changed
the x-axis to log(frame number) and performed linear re-
gression on the data points. The linear regression result is
shown in Figure 6b. The slope of the black line is −0.69
which shows the effect of our method drops while the frame
number climbs. But this effect is not significant so that our
method is also applicable to long GIFs.

5.2. Execution Time Analysis

Since GIFs are usually used on Web or mobile devices,
the execution time of GIF super-resolution algorithm should
be real-time so that people do not need to wait for process-
ing or loading the GIFs.

Thus, we record the execution time of three methods
on GIFSR emotion set. In Table 5, we listed these exe-
cution time of different resolution combinations. Bicubic
interpolation is the fastest algorithm with speed of approx-
imately 0.04 second per frame. VSRnet processed really
slow even with a low resolution combination (32, 8). Our
method, however, gave a good enough execution time on
CPU, which could be at least 80 times faster than VSR-

H
ig

h-
re

so
lu

tio
n

G
IF

B
ic

ub
ic

 In
te

rp
ol

at
io

n
P

S
N

R
 =

 1
5.

67
V

S
R

ne
t

P
S

N
R

 =
 1

4.
97

O
ur

 r
es

ul
ts

P
S

N
R

 =
 2

9.
33

H
ig

h-
re

so
lu

tio
n

G
IF

B
ic

ub
ic

 In
te

rp
ol

at
io

n
P

S
N

R
 =

 1
2.

61
V

S
R

ne
t

P
S

N
R

 =
 1

0.
64

O
ur

 r
es

ul
ts

P
S

N
R

 =
 2

6.
19

Figure 5: Sample results for our method on GIFSR dataset.

H
ig

h-
re

so
lu

tio
n

G
IF

B
ic

ub
ic

 In
te

rp
ol

at
io

n
P

S
N

R
 =

 1
4.

16
V

S
R

ne
t

P
S

N
R

 =
 1

1.
25

O
ur

 r
es

ul
ts

P
S

N
R

 =
 2

7.
22

Figure 5: Sample results for our method on GIFSR dataset. (Cont’d.)

Model (HR, LR) Per-frame Time Per-GIF Time
Bicubic* (32, 8) 0.0373 1.3267

(64, 16) 0.0395 1.4041
(128, 32) 0.0538 1.9128

VSRnet (32, 8) 7.3692 262.0845
(64, 16) 12.3024 437.5392
(128, 32) 20.4888 728.6823

Our (32, 8) 0.0676 2.4041
method (64, 16) 0.1178 4.1905

(128, 32) 0.3088 10.9813
∗ The execution time of Bicubic Interpolation includes frame extraction

and combination processes.

Table 5: Comparison between execution time (in seconds)
of Bicubic Interpolation, VSRnet and our method on GIFSR
emotion set with different resolution combinations.

net on GPU. With a speed of 0.3 second per frame on a
(128, 32) GIF, this algorithm can be treated as real-time and
potentially can apply on Web or mobile devices.

Moreover, another factor that can affect execution time
is the number of iterations during gradient descent. There-

fore, we changed the number of iterations to be τ =
{10, 20, 30, 50, 100} and compare their PSNR results and
execution times. The results are shown in Figure 7. The
PSNR is improved when the number of iterations increases
and execution time grows linearly with the number of itera-
tions.

5.3. File Size Analysis

Finally, to demonstrate our algorithm can be used
to compress GIF, we summarized the file size of high-
resolution GIFs, which are the files that should be down-
loaded by users, and low-resolution frames plus high-
resolution first and last frames, which are the input of our
GIF super-resolution algorithm in Table 6. Here, we listed
the size of high-resolution frames in the table and it only
accounts for a small proportion (around 15%) of the size
of all input files. Looking at the file size of the high-
resolution GIFs and input files, we can conclude that, using
our method, a GIF with a resolution of 128×128 pixels can
be compressed by 70%.

6. Conclusion
In this paper, we established a GIF super-resolution

dataset “GIFSR”, containing 1134 items divided into five

Number of frames
0 50 100 150 200 250 300 350 400

P
S

N
R

 in
cr

em
en

t

-2

0

2

4

6

8

10

12

Emotion
Action
Scene
Animation
Animal

(a) Distribution of the frame number and PSNR results.

log(Number of frames)
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P
S

N
R

 in
cr

em
en

t

-2

0

2

4

6

8

10

12

Emotion
Action
Scene
Animation
Animal

(b) Distribution of the logarithm of frame number and PSNR re-
sults. The black line is the linear regression of the data points.

Figure 6: The relationship between PSNR results and frame
number.

(HR, LR) HR GIF Input files Compressed
(32, 8) 29.6MB 0.8/11.4MB 18.2MB
(64, 16) 77.9MB 1.7/13.5MB 64.4MB
(128, 32) 235.8MB 3.5/19.5MB 216.3MB

Table 6: Comparison between file size of high-resolution
GIF and the input of our method on GIFSR emotion set.
Here input files contain LR frames and HR first and last
frames and data is in the format of “size of HR frames / size
of all input files”.

categories. Then, we proposed a GIF super-resolution
method combining bicubic interpolation and temporal op-

Number of iterations
0 10 20 30 40 50 60 70 80 90 100 110

A
ve

ra
ge

 P
S

N
R

19.5

20

20.5

21

21.5

22

22.5

23

(HR, LR) = (32, 8)
(HR, LR) = (64, 16)
(HR, LR) = (128, 32)

(a) Average PSNR results.

Number of iterations
0 10 20 30 40 50 60 70 80 90 100 110

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
fo

r
ea

ch
 G

IF
 (

s)

2

4

6

8

10

12

14

16

18

20

22

(HR, LR) = (32, 8)
(HR, LR) = (64, 16)
(HR, LR) = (128, 32)

(b) Average execution time.

Figure 7: The effect of the number of iterations in gradient
descent on PSNR results and execution times for different
resolution combinations on GIFSR.

erator. The proposed method was tested on GIFSR dataset
and obtained higher PSNR than bicubic Interpolation and
VSRnet baselines. Moreover, we analyzed the execution
time of our method on CPU which outperformed at least 80
times than VSRnet on GPU. Finally, the file size of high-
resolution and low-resolution GIFs are collected and we
concluded that GIFs can be compressed by 70% using our
method.

7. Acknowledgement

We are very thankful to Shih-Fu Chang for his insight-
ful suggestions and comments. L. Cao would like to thank
Ding Liu for the discussions on video super-resolution.

References
[1] The consumer digital video library. Institute for Telecom-

munication Sciences. Available: http://www.cdvl.
org/. Online; Accessed: 2017-11-25.

[2] Giphy: Search all the gifs & make your own animated gif.
Available: https://giphy.com/. Online; Accessed:
2017-11-25.

[3] Myanmar 60p. Harmonic Inc. (2014). Available:
http://www.harmonicinc.com/resources/
videos/4k-video-clip-center. Online; Ac-
cessed: 2017-11-25.

[4] Videoset4. Available: https://twitter.app.box.
com/v/vespcn-vid4. Online; Accessed: 2017-11-25.

[5] R. Dahl, M. Norouzi, and J. Shlens. Pixel recursive super
resolution. arXiv preprint arXiv:1702.00783, 2017.

[6] K. Hayat. Super-resolution via deep learning. arXiv preprint
arXiv:1706.09077, 2017.

[7] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. arXiv preprint arXiv:1612.01925, 2016.

[8] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos.
Video super-resolution with convolutional neural networks.
IEEE Transactions on Computational Imaging, 2(2):109–
122, 2016.

[9] R. Keys. Cubic convolution interpolation for digital image
processing. IEEE transactions on acoustics, speech, and sig-
nal processing, 29(6):1153–1160, 1981.

[10] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-
resolution using very deep convolutional networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1646–1654, 2016.

[11] C. Liu and D. Sun. On bayesian adaptive video super reso-
lution. IEEE transactions on pattern analysis and machine
intelligence, 36(2):346–360, 2014.

[12] O. Makansi, E. Ilg, and T. Brox. End-to-end learning of
video super-resolution with motion compensation. In Ger-
man Conference on Pattern Recognition, pages 203–214.
Springer, 2017.

[13] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-
age and video super-resolution using an efficient sub-pixel
convolutional neural network. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016.

http://www.cdvl.org/
http://www.cdvl.org/
https://giphy.com/
http://www.harmonicinc.com/resources/videos/4k-video-clip-center
http://www.harmonicinc.com/resources/videos/4k-video-clip-center
https://twitter.app.box.com/v/vespcn-vid4
https://twitter.app.box.com/v/vespcn-vid4

	. Introduction
	. Related Work
	. Dataset
	. Our Method
	. Experiment
	. PSNR of Our Method
	. Execution Time Analysis
	. File Size Analysis

	. Conclusion
	. Acknowledgement

